4 research outputs found

    Assessment and mapping of water erosion by the integration of the Gavrilovic “EPM” model in the Inaouene watershed, Morocco

    Get PDF
    Water erosion is one of the main causes of soil degradation around the world. In M orocco, In M orocco, the watersheds have very significant soil wastes, related to various physical and anthropic factors. The Oued Inaouene watershed is concerned because of its location in the eastern part of the Saïss basin, between the Middle Atlas and the Pre-Rif, where water erosion is more accentuated. This basin covers a total area of 3597.13 Km2 and it is marked by a semi-arid climate with relatively abundant (989.68 mm), irregular rainfall and strong anthropic pressure. This will have an impact of overexploiting natural resources in general and soils in particular. The excessive use of agricultural land has led to their fragility and aggravation of their susceptibility to erosion. These conditions, both natural and anthropic, have induced a rather intense erosive dynamic, which can be visible in its various forms, including gullying and landslides. The erosive dynamics leads progressively and certainly to impoverish the soils of the watershed and the silting of the dam Idris 1st located downstream of the Oued Inaouene, hence the interest of this study. The use of the “EPM” model for the estimation of soil losses approaches the severity of the erosive phenomenon. The average soil loss due to water erosion according to the model used is estimated at 53.34 t/ha/year. The maximum losses are about 597.642 t/ha/yr per plot. Total annual losses for the watershed are approximately 211084195 t/yr. Furthermore, the analysis of these results allowed, with the help of GIS, to determine the factors that control water erosion and which are, in order of importance: rainfall, slope, and soil sensitivity Soil protection. If anti-erosion measures aren’t adopted in the threatened parts of the watershed, this will have serious consequences for the dam and water quality

    Assessment of Inaouene River Pollution for Potable Water Supply, Northern Morocco

    No full text
    Under hydrological uncertainty and to secure the potable water supply for the Fez city with more than one million and a half inhabitants, the competent authority intends to bring water from the Idriss 1 st reservoir 30 km away, downstream the Inaouene watershed. The pollution risks as well as the contamination degree of surface water and sediments were assessed by monitoring the physicochemical characteristics of the water and sediment samples. The results revealed high values of chemical oxygen demand and chloride mainly linked to the uncontrolled liquid discharges. Calcium and magnesium showed also high concentrations that are due to the watershed geology, where carbonate rocks are dominant. The contents of some heavy metals remain relatively low and within the Moroccan standards. The metal contents in sediments show a low degree of the anthropogenic pollution. This led to conclude that the waters and sediments in the study area show relatively degraded quality and then could be used for water supply under continuous control

    Assessment of Heavy Metals in the Sediments of the Inaouene Watershed Upstream the Idriss 1st Dam, Northern Morocco

    No full text
    In order to evaluate the degree of sediment contamination by metallic trace elements in the watershed of Oued Inaouene (North-East of Morocco), samples of surface sediments were taken along the river and at the level of the Idriss 1st dam. The objective was to obtain thorough knowledge of the environment (metallic element content, organic matter content, granulometry, and pH, EC, CaCO3 content) in order to identify the degree of pollution in these sediments. The results of analysis have highlighted a contamination accentuated by Ba, Sr, P, Cu, Pb, In fact, this element is present at very high levels, with a maximum content ppm for the samples taken upstream of Oued Inaouene. This increase is related to the physicochemical conditions of the environment, despite the diversity of sources of pollutants. The analysis of hazardous heavy metals showed the values under the detection limits. The qualitative study allowed to identifying the source of contamination, it is an anthropogenic source related to the discharges of cities in vicinity of Oued Inaouene, and natural considered as the main source of pollution by trace elements of sediments that constitute an important reserve of pollutants in the environment

    Exploring the Multi-Faceted Potential of Carob (<i>Ceratonia siliqua</i> var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity

    No full text
    The botanical species Ceratonia siliqua L., commonly referred to as the Carob tree, and locally as “L’Kharrûb”, holds significance as an agro-sylvo-pastoral species, and is traditionally utilized in Morocco for treating a variety of ailments. This current investigation aims to ascertain the antioxidant, antimicrobial, and cytotoxic properties of the ethanolic extract of C. siliqua leaves (CSEE). Initially, we analyzed the chemical composition of CSEE through high-performance liquid chromatography with Diode-Array Detection (HPLC-DAD). Subsequently, we conducted various assessments, including DPPH scavenging capacity, β-carotene bleaching assay, ABTS scavenging, and total antioxidant capacity assays to evaluate the antioxidant activity of the extract. In this study, we investigated the antimicrobial properties of CSEE against five bacterial strains (two gram-positive, Staphylococcus aureus, and Enterococcus faecalis; and three gram-negative bacteria, Escherichia coli, Escherichia vekanda, and Pseudomonas aeruginosa) and two fungi (Candida albicans, and Geotrichum candidum). Additionally, we evaluated the cytotoxicity of CSEE on three human breast cancer cell lines (MCF-7, MDA-MB-231, and MDA-MB-436) and assessed the potential genotoxicity of the extract using the comet assay. Through HPLC-DAD analysis, we determined that phenolic acids and flavonoids were the primary constituents of the CSEE extract. The results of the DPPH test indicated a potent scavenging capacity of the extract with an IC50 of 302.78 ± 7.55 µg/mL, which was comparable to that of ascorbic acid with an IC50 of 260.24 ± 6.45 µg/mL. Similarly, the β-carotene test demonstrated an IC50 of 352.06 ± 12.16 µg/mL, signifying the extract’s potential to inhibit oxidative damage. The ABTS assay revealed IC50 values of 48.13 ± 3.66 TE µmol/mL, indicating a strong ability of CSEE to scavenge ABTS radicals, and the TAC assay demonstrated an IC50 value of 165 ± 7.66 µg AAE/mg. The results suggest that the CSEE extract had potent antioxidant activity. Regarding its antimicrobial activity, the CSEE extract was effective against all five tested bacterial strains, indicating its broad-spectrum antibacterial properties. However, it only showed moderate activity against the two tested fungal strains, suggesting it may not be as effective against fungi. The CSEE exhibited a noteworthy dose-dependent inhibitory activity against all the tested tumor cell lines in vitro. The extract did not induce DNA damage at the concentrations of 6.25, 12.5, 25, and 50 µg/mL, as assessed by the comet assay. However, the 100 µg/mL concentration of CSEE resulted in a significant genotoxic effect compared to the negative control. A computational analysis was conducted to determine the physicochemical and pharmacokinetic characteristics of the constituent molecules present in the extract. The Prediction of Activity Spectra of Substances (PASS) test was employed to forecast the potential biological activities of these molecules. Additionally, the toxicity of the molecules was evaluated using the Protox II webserver
    corecore